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A method of determining the principal thermal conductivities and the specific 
heat capacity for an anisotropic crystal is presented, tested, and discussed. Two 
parallel metal strips are deposited onto a plane face of the specimen. One strip 
serves as a heater, the other as a temperature sensor. A pulse of constant dc 
power is applied to the heater, and the response at the sensor is measured by 
means of an ac bridge, monitored by a lock-in amplifier. The experiment is 
on-line with a P D P - I I / 3 4  computer system. The expression for the temperature 
rise in case of infinitely long strips is fitted to the sensor temperature data. In the 
isotropic case one experiment yields both thermal conductivity and heat capac- 
ity. In an anisotropic case experiments have to be performed with two or three 
different strip orientations, if all principal thermal conductivities are to be 
determined. A precision of 0.1% is readily obtained, and the method is thus 
valuable in cases where small changes in thermal conductivity are to be 
determined. We estimate that the accuracy generally obtainable is about 2% as 
regards thermal conductivity and heat capacity. The accuracy in determining 
thermal diffusivities is mainly limited by geometrical factors and may ultimately 
be better than 1%. Results are given for isotropic CaF 2 and anisotropic SiO: at 
300 K. 

KEY WORDS:  calcium difluoride (CaF2); heat capacity; silicon dioxide 
(a-SiO2); thermal conductivity tensor; thermal diffusivity. 

1. I N T R O D U C T I O N  

It has been shown that thermal conductivity tensor components may be 
determined, as well as specific heat capacity, by means of a transient 
method [1]. The specimen is split or ground, so that a plane surface is 
obtained, containing two principal axes of the thermal conductivity ellip- 
soid. On this surface two metal strips are deposited parallel to one of the 
axes. The strips are provided with potential taps as shown in Fig. 1. The 
longer strip is used as a heater, the shorter one as a resistive temperature 
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Fig. 1. Pattern of copper and nickel strips deposited on crystal specimen by means of electron 
beam evaporation. Directions 1 and 2 are principal axes of the thermal conductivity tensor. 

sensor. A constant power is applied to the heater, and the response is 
measured by means of a sensor as a function of time. The thermal 
quantities may then be calculated from the temperature data. The method 
was recently used by the present authors [2, 3] in investigations of the 
influence of uniaxial stress on lattice thermal conductivity. Another group 
has demonstrated the use of a single strip [4], analogous to the hot-wire 
method, for measuring thermal properties in the anisotropic case. The 
purpose of this paper is to describe how two-strip experiments may be 
implemented and to discuss sources of error. The potential for absolute 
measurements will be illustrated by results on isotropic as well as anisotropic 
specimens. 

2. THEORY OF MEASUREMENTS 

2.1. Infinite Heater 

Let the principal tensor axis perpendicular to the strips be number 1, 
that parallel to the strips number 2, and that perpenducular to the face 
number 3. The expression for the temperature rise at a distance ~ from the 
center of the heater strip is [1] 

A T =  T -  T O = q(Xl?t3)-l/2 f (X l t /oc  p ,~,wh) (1) 

where 

f ( X l t / o c  e , 4, wh) 

= (Xlt/~rpce)l/2(2Wh) -I  

• {eft(z+ ) - e r r ( z _  ) -  z+ Ei(-z2+ )~r - ' / 2  + z_ E i ( - z  2_)~r -I /2 ) 
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Here 

z+ = (pcp/4A,t)l/2(~ + wh), z_ = (pcp/4Alt)'/2(~ - wh) 

q is the power per unit length, X~ is the thermal conductivity in direction i, t 
is the time, pep is the heat capacity per unit volume, and w h is the heater 
half-width. The expression was derived on the assumptions that the heater 
strip has no heat capacity and is infinitely long. It was also assumed that 
the power density is constant over the heater area. 

The sensor conductance, G, is assumed to vary linearly with T over the 
increment produced by the pulse: 

G = ao{1 - B ( T o ) 6 T }  

where the constant G o and the function fl(To) may be determined before 
the transient experiment. If the sensor has a half-width of ws, we have the 
following expression for the sensor conductance in response to a step 
power: 

G = (2%)-ls f l ( T o ) A T ) d ~  

Using Eq. (1) we finally obtain 

a o -  G _ B(To) rX+WsaTd  
Go 2w~ J~x_ ws 

B(To)qQ,?,3)- ' /2 x+w (2) 
= ( 

( G  O - G ) / G- 0 = ~ ( To)q(~l~k3)- l /2F(~kl t /  pcp ,x ,  w h , Ws) 

The quantity (G O - G ) / G  o -- A R / ( R  o + AR), where R is the sensor resis- 
tance, may be measured against time by means of a bridge. The two 
p a r a m e t e r s  A 1 = (Al~k3) 1/2 and A 2 =Xl/PC p may then be determined by 
fitting the theoretical expression (2) to the measured data. If 1 and 3 are 
thermally equivalent directions, we immediately have X I --X 3 - -A 1 and 
OCp = A I / A 2 .  

If a similar experiment is carried out with the strips parallel to the 1 
direction, the fitting procedure yields the parameters B t = (X2X3) 1/2 and 
B 2 = ~ 2 / p c  p. From this we now obtain X 2 - -B2/A~ and X2= B2AI/A 2 
(alternatively)~3 = BzA2/B2 A1). If the three principal tensor components 
are all different, an additional measurement must be carried out on a 
crystal face perpendicular to the first one. 

Various simplifications are possible in special situations. If Ocp is 
already accurately known from other measurements, two independent 
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values of X are obtained from a strip measurement on an isotropic material. 
One of the values depends on/3, determined prior to the pulse experiment, 
but the parameter A 2 yields a conductivity value independent of /3 and 
depending only on the uncalibrated bridge output, on time and on geome- 
try. The latter method of determining X by way of the thermal diffusivity 
seems to hold promise of high accuracy. If the tensor ellipsoid has axial 
symmetry and Ocp is known, a measurement with one strip orientation 
suffices to determine X 1 and X 3. The coefficient /3 must, however, be 
determined separately. 

In order to reduce calculation times, we store a table of the function 
F(XLt/oce,x ,  wh,w,), numerically integrated for fixed values of x, w h, and 
w s, in the computer. Values of F for any argument Xl t /pc  p is then quickly 
obtained by parabolic interpolation. The fitting of Eq. (2) is made by 
Gauss' method [5] involving successive linerization of the fitting function. 

2.2. Finite Heater Length 

The above theory is strictly valid only for an infinitely long heater. 
Since the conduction problem is linear, we should thus subtract, in Eq. (2), 
the temperature rise that would be produced by the missing heater ends. In 
practice this contribution can usually be made negligible by a suitable 
choice of the geometrical parameters, but we need an expression for the 
end effect in order to check whether the heater is sufficiently long for a 
given pulse duration. Obviously, it is sufficient to approximate the ends of 
the heater strip by line sources and to calculate the average temperature 
along the center line of the sensor, at distance x. According to Carslaw and 
Jaeger [6] the temperature rise at x, y, 0, t due to an instantaneous point 
source at x', y ' ,  0, t' of energy E is (with c ~ cp) 

E(pc) 1/2 
ATe= 

4~r3/2(/- t')3/2(~kl~k2~k3) 1/2 

{ 0c [ (x- x')2 + (y-y')2 ]} 
X exp 4(t - t') X 1 X 2 

Integrating this expression over t' we obtain the response to a continuous 
point source of power P at x'  = 0: 

ATp -- P x2 (y  _y , )2  "-1/2 ( 1/2 

2"r/(~l~k2)k3) 1/2 ~ -4- ~2 erfc ~ + ~k 2 

(3) 
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If the heater extends to + L h and the potential taps of the sensor are at 
+ Ls, we have the following expression for a finite heater: 

Go 2ws x -  ws 2Ls - Ls Lh 

with q dy' replacing P in A Tp. The double integral must be evaluated 
numerically, but only modest accuracy is required to estimate the ratio of 
the error term to the total. 

So far we have considered the effect of the absence of heater strip for 
]y'[ > L h. In the practical case there are, however, also soldering points at 
the ends, which tend to maintain the temperature at its initial value. For the 
worst case of zero temperature increase at the soldering points, acceptable 
boundary conditions are obtained with the following model. A finite strip 
source of strength q is combined with strip sources of strength - q ,  
extending from the limits to infinity. If we let y '  = 0 be a soldering point, 
the temperature perturbation A T e for y > 0 is given by an integral over the 
continuous point source solution (Eq. 3): 

ar ,=f  dx'f ~ d/ Tp 
- - W  h - - ~  

which has to be computed numerically. 
A rough estimate of the cooling caused by a solder point may be 

obtained in a much simpler way. According to Eq. (1) the heater tempera- 
ture at ~ - - 0  varies slowly for large times. If the heater temperature is 
approximated by the maximum value, A Tm~ x, the perturbation is given by 
the well-known solution [6] 

ATe = A Tmaxerfc [ y /2(a2/pc t )  '/2 ] (6) 

2.3. Finite Mass  of Strips 

The thermal lag caused by the finite heat capacity of the heater strip 
may be estimated using the line source as an approximation. The power 
stored in the strip is rnhchT, m h being the mass per unit length and e h the 
specific heat per unit mass of the heater material. This power will not be 
available for conduction in the specimen and effectively yields a negative 
contribution to q in Eq. (1). Using superposition we treat the response to 
this contribution as a temperature deficit. The average temperature of the 
heater may be approximated by that in the middle, A T  m, and hence we 
have J'(t ')= d(ATm)/Ot', with 

 XT., = q(X,a3)-'/2 f (a ,C/pc,  O, wh). 
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Integrating over instantaneous line sources [6], dissipating the power deficit 
mhc h T, we obtain an expression for the temperature deficit, 8Th, which may 
be transformed by partial integration 

8T h _ mhch s  1 exp[_x2oc/4h~(t  - t ')]dt' 
2,/r ()kl)t3) I / 2 dt' t t' 

2rr(X,X3) '/2 s AT,,, 4X,~ ~ t') 3 (t t') 2 

• exp  I - xepc/4Xl(* - t') ] at' (7)  

This final expression may be integrated numerically. In practice the power 
deficit is large only at small times and can hence also be treated very 
roughly in terms of a time shift, 81, obtainable from qSt = mhchATmax, 
where k Tma x is the temperature at the end of the pulse. 

The effect of finite sensor mass may be estimated in a similar fashion. 
The temperature at the middle of the sensor, A Ts, is approximately given 
by the continuous line source solution [1], 

A T -  q ( ~  e 2~ du (8) 
2q-((~kl)k3) 1 / 2 Jx2pc/4Xlt U 

and the sensor heating rate thus becomes 

L ( t ' )  - q exp( - x2pc/aXlt ') (9) 
2,/r (XIX3) 1/2t' 

The solution corresponding to the instantaneous strip source is obtained by 
integrating over instantaneous line sources as follows: 

AT.s - E/2Ws fw, exp[_(~_~,)2pc/4~.l t]d~, 
27rt (?tl~k3) 1/2 ~ -w, - 

= E lef t(z+ - e r f ( z  )] 
4~1/211/2X ~ /2( 0 c)1/2w, 

with the notation z_+ = (Oc/4X lt)1/2(~ + w,). In this expression we put ~ = 0, 
since we are interested in the temperature at the center of the sensor. We 
now estimate the temperature deficit, 8T s, at the sensor by integrating AT, s 
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over t' using the energy deficit E = msc , i/', dr': 

6Ts=A foot l e xp ( - xZoc /4h , t ' ) (  t-@lt , )l/2erf[ pcw~ ],/2 4?t~-U = t') dt' 

A = qmse" 
4,rr3/2N~/2)k3(OC)I/2w s 

(10) 

An upper limit to the above integral expression for ST, may be obtained. 
We note that 1?,(t') in Eq. (9) has a maximum value of 4qXl/ 
(2~rex20ch~/22t~/2) and that the last factor in Eq. (10) is positive. Taking 
Ts(t') equal to its maximum value, we thus obtain an upper limit to the 
integral in Eq. (10), which then corresponds to a continuous strip source. 
Putting q = m~CsJ'ma x and ~ = 0 in Eq. (1), we finally have 

6T s < 2m, csq/(Trex2och3)f(h]t/Oc, O, %) 01) 

3. E X P E R I M E N T A L  P R O C E D U R E  

The timing circuitry consists of an oscillator, a frequency divider, and 
a triple counter (Fig. 2). The oscillator and the current amplifier AO supply 
ac to the bridge, designed to detect the change in sensor resistance. The 

=t=rt = 

_J-l_" tr?g 

I RO common 

PDP-11/34 1 

ref 

Fig. 2. Circuitry for heating and temperature sensing. 
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frequency divider sets the time interval between samples of the lock-in 
amplifier output. The triple counter delivers selected numbers of trigger 
pulses to the A / D  converter. (Conversion was performed by a Hewlett- 
Packard 3456A multimeter at the later stages of this work.) First, a certain 
number of background points are taken without heating. Then dc is 
supplied to the heater, and readings are taken until the end of the heating 
pulse. Finally, a number of points are taken during cooling, still at the same 
rate. 

The triple counter also delivers a voltage pulse of constant height for 
the heater strip. The series resistor, R3, is chosen equal to the total 
resistance of the heater strip, so the power developed in the heater remains 
constant to first order. The resistance of the sensor strip is typically of the 
order of 300 ~2. The low noise amplifiers A1-A4 of unity gain transform 
impedances, so that reasonably low bridge resistance values may be used. 
The bridge is essentially of Kelvin-Thomson type. 

Measurements are Started on command from the PDP-11/34 com- 
puter, which is also used to manage the A / D  converter and to calculate 
values of ?~ and pep. When the measured sensor resistance values have been 
stored in memory, the next step is to fit a straight line to the background 
points (Fig. 3). Values calculated by extrapolating this line are subtracted 
from those obtained on heating, yielding the net resistance rise (Fig. 4). 
Equation (2) is then fitted to these reduced resistance values in order to 
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Fig. 3. Raw data obtained at the output of the lock-in voltmeter. The first part of the curve 
(90 points) corresponds to the sensor temperature before heating (background), the second 
part (90 points) to the temperature rise on heating. These two phases are used for analysis in 
this paper. The cooling phase could also be used, if the strips had been long enough to avoid 
end effects. 
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Fig. 4. Reduced temperature data and best fitting theoretical curves corresponding to the two 
principal strip orientations on quartz. The 180 data points fall mostly on the curves. 

find the thermal parameters. We have not so far utilized the temperature 
data measured on cooling, although a corresponding fitting function may 
readily be obtained from Eq. (2) by subtracting a delayed solution of the 
same kind. 

Equation (2) is obviously nonlinear in the parameters A1 = (3~lTts) I/2 
and A 2 = ) t l /Oc  p, from which A s and pep are to be calculated. Fitting is 
achieved by Gauss' classical method [5], involving first order Taylor expan- 
sion of  the fitting function in each iteration. This method was slightly 
modified by limiting the step length in parameter space. In order to avoid 
repeated calculations of the function F in Eq. (2) during fitting, we tabulate 
it for given x, wh, and w s and use parabolic interpolation in the single 
variable X I t / p c  e . 

The strips were formed by electron beam evaporation. Copper was 
used for the heater and nickel for the sensor. The sensor was calibrated by 
measuring the resistance between its potential taps quasistatically against 
temperature, determined by a Hewlett-Packard quartz thermometer. At 
each temperature the resistance was measured repeatedly by a Hewlett- 
Packard 3456A multimeter, until readings indicated that equilibrium had 
been reached, which typically required about an hour. The calibration 
factor that should multiply a measured voltage increment to yield the 
sensor resistance increment, AR, is determined separately. We automati- 
cally switch a set of large, parallel resistances over the upper bridge resistor 
(Fig. 2, resistor with center-tap), thus providing known values of AR. This 
procedure also checks the linearity of the output signal versus AR. 
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4. SOURCES OF ERROR 

4.1. Error Related to Geometry 

The finite length of the heater contributes an error to the temperatures 
measured at large times. A safe pulse length may be calculated from the 
formulas in Sec. 2.2. The temperature error grows strongly at large times, 
causing a characteristic deviation from Eq. (2), which also provides warning 
against excessive pulse time. The ratio of heater length to strip separation 
could be increased to permit the use of longer times. The potential taps on 
the heater locally reduce the power dissipated at the junction. The tempera- 
ture perturbation caused by this deficit will, however, also be noticeable by 
an error of fit at large times. 

The finite length of the specimen may be used to advantage, if the 
heater strip extends to the edges of the specimen, the boundaries being 
perpendicular to the strips. In that case the heat current is forced to be 
perpendicular to the heater strip, thus eliminating the problem of finite 
length. In practice, however, the heat capacity of the solder points still 
contribute an error. The finite extension of the specimen perpendicular to 
the strips gives rise to a temperature perturbation, which may be estimated 
in terms of a reflected pulse from the boundaries. A simpler approach, 
often sufficient, is to consider the temperature increment at other bounda- 
ries than that carrying the strips, using Eq. (1) or the continuous line 
source. The error at the sensor is always smaller than the maximum of this 
quantity. 

The distance, x, between the strips and their widths, w h and w~, are 
easily measured by a workshop microscope. The widths are obviously less 
critical, but a certain relative error in x gives rise to twice that error in 
thermal diffusivity. We measure the geometrical quantity x with an accu- 
racy of + 0.002 mm. In our experiments x is 1-2 mm, and hence the error 
in x contributes at most 0.4% error in the diffusivity. In addition to purely 
geometrical factors we must consider the possibility that the strips are 
nonuniform in thickness, especially across their widths. This can occur 
because of shadowing or solid angle effects on evaporation. These errors 
may be reduced to a tolerable level by mounting the mask symmetrically 
with respect to the evaporation source and sufficiently far from it. 

Even if the heater strip is of uniform thickness, the power density may 
not be uniform. By plotting Eq. (1) we see that the temperature is uniform 
across the heater at small times and at large times. In an intermediate time 
range, however, the heater will be hotter at the center than at the edges. In 
view of the temperature coefficient of resistance this will lead to a power 
density slightly smaller at the center and larger at the edges, i.e., the 
temperature tends to be more uniform than indicated by Eq. (1). The 
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resulting error may be estimated by the following model. The perturbation 
caused by deviations from the average power density (q/2wh) is repre- 
sented by the quadrupole moment from a group of three line sources. Two 
of them are located at 0.75w h from the center and dissipate ql(t). One is at 
the center and dissipates - 2 q l ( t  ). The function ql(t) is obtained by 
simplest Simpson integration of Eq. (1) over the interval 0.Sw h < ~ < w h. 
The temperature perturbation at the sensor is then found by integrating 
over instantaneous line sources as in Eq. (8). 

The power per unit length, q, is obtained from heater current, voltage 
drop, and distance between the voltage taps. The finite width of these taps, 
0.15 mm in our case, introduces an uncertainty of about 0.8% in q and as 
much in ~. Photolithographic methods should make it possible to reduce 
this error by at least a factor of 10. 

4.2. Error Related to Thermal Properties 

The problem of the finite heat capacities of heater and sensor is treated 
in Sect. 2.3. Applied to our particular cases, with Ni and Cu strips 40-160 
rim thick, these estimates give negligible contributions to the quantities 
measured. The theoretical expressions given in Sec. 2 are valid for a 
specimen in vacuum. The effect of a surrounding medium, such as air, may 
be roughly estimated by considering the heat diffusing into the specimen 
and into the medium, following a temperature step at the interface. A 
simple calculation shows the power transmitted in either direction to be 
proportional to (~.pcp) 1/2. The error due to conduction in air would thus be 
about 0.02%, but convection could considerably increase this figure. The 
measurements were thus also performed in a vacuum, reducing the density 
by a factor of 1000. A comparison in the case of NaC1 showed the change 
in )~ caused by the air to be less than 0.03%, the value of pcp being 
unaffected. 

The potential taps on the sensor connect the latter With a cooler region 
of the specimen. The measured temperatures could thus be expected to be 
too low. This error is difficult to estimate, but the following is a coarse 
attempt at a working model. The potential tap is considered as a thermal 
shunt over that part of the specimen on which it is deposited. The depth of 
the heated volume is of the order of the strip separation, x. If the thermal 
conductivity of the metal tap is denoted Am and its thickness d m, the relative 
temperature error at the junction between tap and sensor may be written 
~.mdrn/~tx, or  5 X 10 - 4  in our worst case. The error in the measured 
temperature, which is averaged over the sensor, is expected to be considera- 
bly smaller. Although our estimate is very uncertain, we are at least left 
with a satisfactory safety margin. The situation could be further improved 
by using potential taps of less conductive metal or alloy. 
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The temperature rise of the sensor in a typical experiment is about 1 
K, and that of the heater is 2-5 K depending on the pulse duration chosen. 
Consequently the thermal properties are determined at a somewhat higher 
temperature than that measured before the onset of heating. Although we 
take this into account by calculating an average temperature over the active 
volume, there remains an uncertainty in temperature by a fraction of the 
heater temperature excursion. Bruce and Cannell [7] also discussed this 
problem and suggested a way of alleviating it. 

Thermal transport by radiation may play a role at high temperature or, 
in rare cases, at room temperature and below. If the mean free path of 
infrared radiation is much smaller than the strip separation (x), the usual 
equation of heat conduction applies, and the effect of radiation is included 
in the measured conductivity. If the mean free path is of the order of x, the 
usual equation does not apply, and a poor fit may result. In such a case it is 
uncertain how measured conductivities should be interpreted. Finally, if the 
mean free path is much larger than x, power is lost directly from the heater 
to an extent that may be measured or estimated. In principle radiation from 
the heater may also proceed directly to the sensor, but fortunately the solid 
angle is vanishingly small in this geometry. It is thus sufficient to correct for 
radiative power loss from the heater to obtain the thermal conductivity. 

4.3. Error Related to Electrical Properties 

The main calibration problem is to relate accurately the sensor resis- 
tance, R, to the temperature, T. One problem is that the quartz thermome- 
ter used to measure T cannot, in practice, be clamped to the sensor strip. 
It actually measures the temperature of a copper box, in which the 
specimen is mounted. Our procedure is to keep the temperature constant 
for sufficiently long time to establish equilibrium. This is time-consuming 
but accurate, as judged from the resulting reproducibility. A more serious 
problem is the electrical stability of the evaporated sensor strip. It appears 
that R drifts noticeably over several days after evaporation, probably due 
to recrystallization. If the sensor is left to condition for a week at room 
temperature before calibration, however, we can determine the calibration 
factor, dR/dT, with a probable error of 0.2%. This factor then remains 
valid for many days, since dR/dT does not appear to drift. 

A second calibration factor, dU/dR, is necessary to convert digitized 
lock-in amplifier voltages, U, to temperature. This calibration involves only 
electronic circuitry and is straightforward but must be repeated several 
times ~/day. An important point in certain situations is the time constant of 
the lock-in amplifier. In the measurements described in this paper we have 
set the voltmeter at the minimum time constant. Using a time constant of 1 
ms, conductivitity values are observed to change by as much as 0.5%. The 
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total time constant of the instrument may be checked by suddenly chang- 
ing AR to produce a step change of the lock-in amplifier output. 

The quasistatic temperature calibration is strictly valid only under the 
original conditions, i.e., for constant temperature throughout the specimen. 
The calibration constant includes the effect of thermal expansion. Under 
pulse heating, however, the longitudinal thermal expansion of the sensor is 
reduced by the thermal stress field. In the worst case thermal expansion 
would be completely blocked during the pulse. The temperature coefficient, 
R-ldR/dT, would then be smaller by an amount equal to the linear 
expansivity, c~. The temperature coefficient for a metal at room temperature 
is typically 3 • 10 -3 K - i ,  and the expansivities of our specimens are in the 
range (1 - 5) x 10 -5 K -1. The error in temperature, and hence in conduc- 
tivity, should be less than 1% for quartz but may reach 2% for NaC1. In a 
real situation the thermal expansion is not completely blocked, which means 
that a smaller error generally can be expected. 

Since the resistance, R, is measured at 1 kHz, skin effect must be 
considered. The skin depth [8] is given by (c0g/~/2)-1/2, where co = angular 
frequency, g = electrical conductivity, and /~ = permeability. Using this 
formula we find that the skin depth is at least 1000 times the thickness of 
our sensor. The error due to skin effect should hence be vanishingly small. 

4.4. Random Errors 

The random errors of fit arise from the noise in the bridge circuits and 
from general interference. The propagation of the temperature scatter to 
the final results, )~ and pc, may depend on the choice of pulse time. The 
practical upper limit of the pulse time for a given geometry is set by end 
effects. We therefore investigated the effect of random errors by simulation, 
superimposing gaussian scatter on a theoretical temperature function (Eq. 
2). The results show that precision is approximately independent of pulse 
time, at constant number of temperature points, as long as the pulse time 
exceeds x2pc/)~. Smaller times yield increased scatter of the measured data. 

5. RESULTS AND DISCUSSION 

5.1. Isotropic Case 

We have already had occasion to study two isotropic materials using 
the two-strip method [2, 3], but since the objective then was t o  study 
possible changes caused by stress, we did not need to calibrate accurately. 
For the present tests we chose CaF2, because it is easier to handle than 
NaC1. The specimen was a single crystal of pure CaF 2 from BDH Chemi- 
cals Ltd, Dorset, England. Its size was 50 x 25 x 25 mm 3, and strips were 
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Table I. Fitting Parameters for Single Crystal CaF2 a 

A I = )t A e = X / p c p  

(W. m-1 . K - I )  (10 6 m 2- s -1 )  

Series 1 9.675 + 0.004 3.491 _+ 0.002 
2 9.777 +_ 0.002 3.516 _+ 0.001 
3 9.234 __+ 0.004 3.578 _+ 0.002 

Mean  9.56 + 0.17 3.53 + 0.03 

a Each series of measurements  involves 10 heating events, f i ts  being made to each temperature 
recording individually. The errors given are standard deviations of the mean. The mean 
temperature during pulses differed by a few K, but the results given here were reduced to 300 
K assuming T i variation for ~, and constancy for pcp. 

deposited onto one of its larger faces according to Fig. 1. The strip 
separation was x -- 2.052 mm, and the heating time per pulse 1.8 s. 

Three series of measurements were made, each involving evaporation 
of strips and subsequent calibration of the temperature sensor. In each 
series we recorded 10 heating events and fitted the data. The standard 
deviation of the fits was 0.8 m K  on the average, the temperature rise being 
1.1 K. Table ! lists the results of each series. The errors given after the 
parameter  values are standard deviations of the mean, the standard devia- 
tions of the individual measurements being about three times larger. In the 
last row an average is taken of the three mean values above and a standard 
deviation calculated on the basis of these values. 

We first note that the standard deviation of )t is 50 times larger for the 
total experiment than for a single series. This means that most of the 
uncertainty is associated with evaporation and thermometer calibration. As 
we see from the values of X/pCp, the standard deviation of the total result is 
about 15 times larger than for each series. As pointed out in Sec. 2.1, the 
parameter  X/pcp is independent of the thermometer calibration factor and 
depends only on the distance, x, and time. 

Considering our known sources of error we thus expect to determine 
the thermal diffusivity, X/p@, to an accuracy of better than 1%. The 
results from different series indicate, however, that systematic errors arise in 
connection with evaporation or calibration. Dividing the results for the two 
parameters, we obtain pc e = 2.710 • 106 J .  m -3 .  K -1 at 300 K, in good 
agreement with calorimetric measurements [9], which give 2.728 J .  m - 3 .  
K-1 .  If we reverse the procedure and calculate X f rom the diffusivity and 
the calorimetric value for pcp, we obtain )t = 9.63 W -  m - l .  K-1 ,  differing 
by 0.7% from the value determined virtually independently from the first 
fitting parameter. These facts strongly suggest that thermal conductivities 
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may be determined by this method with an accuracy of 2% or better in the 
isotropic case. A best fit to earlier results published by Slack [10] yields 
X = 9.4 W �9 m -  1 . K -  1 at 300 K with a probable error of several percent. 

5.2.  Aniso trop ie  C a s e  

A single crystal of a-quartz (SiO2) was chosen for the anisotropic tests. 
The specimen was 34 • 29 • 17 m m  3 and was cut perpendicular to the 
principal conductivity axes. Strip patterns were evaporated onto the two 
larger faces, the strips being parallel and perpendicular to the c axis, 
respectively. For symmetry reasons the thermal conductivity is the same in 
directions perpendicular to the c axis. Two different strip separations were 
used, x = 1.349 and 2.052 mm. For each separation we made three series of 
measurements involving evaporation and calibration. Each series consisted 
of 10 heating events. The standard deviation of the fits was 1.4 m K  on the 
average for a temperature rise of 3 K. As with CaF 2 the individual 
measurements on SiO 2 exhibited very small standard deviation (about 0.1% 
in all cases). In Table II  we list the average results, which have larger 
standard deviations, although they refer to the mean value. The reason for 
this increased scatter is the errors induced by evaporation and calibration. 

For parallel orientation of the strips with respect to the c axis, X a is 
equal to Xb by symmetry. We thus obtain these conductivity values directly 
from A1, and Ocp is equal to A l i a  2. With )ta, ~kb, and Oc e known, we have, 
using the perpendicular orientation, ?t C = A20c p. We also obtain an addi- 
tional value for one of the conductivities: 

Xb = A 2 / ~ .  �9 
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Fig. 5. Temperature deviation from the best-fitting theoretical function in the case of SiO 2. 
The standard deviation of the fit is 0.03% of the maximum temperature rise. 
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Table II. Fitting Parameters for Crystalline SiO 2 (a-Quartz)  ~ 

AI A2 
O ( W . m  I . K - I )  (106 m2 �9 s - I )  

X1 

X2 

II (~b) ~/z = 6.401 _+ 0.032 ka /pc  e = 3.277 • 0.008 

• (XbXa) ~/2 = 8.647 --- 0.114 Xc/pcp = 5.871 _+ 0.013 

]l (kak, e) ~/2 = 6.517 -- 0.045 ha~pc e = 3.310 • 0.009 

I (~bkc) 1/~ = 8.962 • 0.095 ~.c/pCp = 5.946 • 0.041 

~Experiments were performed at two different strip separations (x). For  each of these x values 
data were taken at two strip orientations (O),  parallel (11) and perpendicular  ( •  to the c axis. 
In each of these four cases an average of the fitting parameters  is given. The average values 
are taken over three series of l0 measurements ,  each involving evaporation of strips and 
calibration of the resistance thermometer  strip. The results are reduced to 300 K, and the 
errors are s tandard deviations of the mean. Strip separations were x 1 = 1.349 m m  and 
x 2 = 2.052 mm. 

In Table III we summarize the final results for SiO 2. We first notice that 
the mean specific heat capacity value agrees within 1% with results from 
adiabatic calorimetry [11]. The difference between our two mean values is 
also about as large as the combined random errors. For the conductivities, 
however, mean values generally differ by more than could be expected 
from the random errors given. This indicates that the strip separation (x) 
does influence the conductivity values, which theoretically should not 
occur. In particular the conductivity values obtained on the basis of 
adiabatically determined pc e differ more than expected, considering the 
estimated errors in x and in fitting. The results from the three series of 

Table III. Final Values of Principal Thermal  Conductivities and Heat  Capacity per 
Uni t  Volume for Crystalline SiO 2 at 300 K a 

x. = x~ x~ x~ P9 
( W . m - l . K  -1} ( W . m - l . K  - l )  ( W . m  1 . K - 1 )  ( 1 0 6 l . m  S . K - I )  

x 1 6.40 + 0.03 6.52 • 0.17 11.47 • 0.03 1.95 • 0.01 

x 2 6.52 • 0.05 6.86 • 0.15 11.71 _+ 0.08 1.97 _ 0.01 

x 1 6.36 • 0.02 11.39 _+ 0.03 K n o w n  

x 2 6.42 _+ 0.02 11.54 _+ 0.08 K n o w n  

~Measurements  were carried out  at two strip separations, x I = 1.349 m m  and x 2 = 2.052 ram. 
Two independent  values of X b result f rom the analysis. The lower half of the table lists 
conductivity values obtained by combining the thermal diffusivity, A2, with calorimetric 
results [11] for pep. 
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measurements of A 2 which yield the mean values of Table I I I  also scatter 
more than can be explained by errors in measuring x and in fitting. From 
the present experimental material, we must conclude that the quantities x, 
w h, and w s are not completely determined by measuring contour lines of the 
evaporated strips. It  seems that uniformity across strips may not necessarily 
result from our evaporation procedure. 

Our weighted mean value of pcp at 300 K is 1.958 • 10 6 J �9 m - 3 K  - 1, 
whereas adiabatic calorimetry [11] yields 1.94• 10 6 J . m  -3 .  K - l .  Our 
weighted mean values of the principal thermal conductivities at 300 K are 
6.40 and 11.44 W .  m - 1 .  K - i .  Literature values of conductivities scatter 
considerably. The most recent publication on this subject [4] contains a 
review of earlier work. Concerning )t a there is general agreement on a value 
of 6 . 5  W �9 m -  1. K 1, but concerning )t c there are essentially two groups of 
values. Birch and Clark [12] and Gustafsson et al. [4] agree about a value of 
)t C = 10.6 W .  m - 1 .  K-~,  although the latter group suggests the presence of 
an error in the case of the higher diffusivity. The results of Koenig [13], 
Colosky [14], and Kawada  [15], on the other hand, extrapolate to an 
average of Xc = 11.4 W .  m 1. K-1 .  Comparison with earlier conductivity 
work thus does not give a definitive answer concerning the accuracy of our 
method. The agreement regarding pcp values as well as the internal consis- 
tency of the data presented in Table I I I  lead us to believe, however, that 
our weighted thermal conductivity results are accurate to within 2% or 
better. 

5.3. Conclusions 

We have seen that a precision of 0.1% may be obtained in individual 
measurements and that considerable improvement  over that figure is possi- 
ble by taking mean values. The present method is thus a valuable tool in 
investigating small changes in thermal conductivity, such as that produced 
"by uniaxial stress. 

The most important  systematic errors proved to be the following. End 
effects always arise at long pulse times but are revealed by inspection of the 
remainder after fitting. The time constant of the lock-in voltmeter did not 
contribute a significant error in the cases of CaF 2 and quartz. If higher 
thermal conductivities are to be measured, however, this error will probably 
become serious but may perhaps be taken into account by an inverse 
Laplace transform of the measured values. The quasistatic calibration of 
sensor resistance against temperature involved some difficulties. In order to 
achieve time stability of the sensor resistance, it became necessary to age 
the strips after evaporation. Bulk resistivity data from the literature cannot 
be used, since the temperature coefficients of evaporated metals are typi- 
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cally only half that of bulk metals. The problems caused by thermally 
produced stress (Sec. 4.3) were not investigated experimentally, but it seems 
probable that they could cause errors amounting to a large fraction of our 
estimated errors. An unexpected problem was the lack of uniformity across 
the strips, which effectively produced errors in measuring x ,  wh, and w s 
under the microscope. However, we have not explored the possibility that 
surface treatment can improve adherence, and improvements may also be 
possible by finding better strip materials. 

The present accuracy of the two-strip method in specific heat capacity 
and thermal conductivity is 2% or better. The accuracy in cases of lower 
conductivities is expected to be as good, but with higher conductivities it 
depends on how well the time constant can be corrected for. Thermal 
diffusivity measurements by this method are particularly promising, since 
geometrical data and linear sensor characteristics are the only require- 
ments. The accuracy in diffusivity would be brought to parts in 103, if the 
strips could be made narrower and their separation thus better defined. In 
order to reduce the associated large temperature excursions one could 
imagine using a semiconducting sensor material, having higher temperature 
sensitivity. 

The advantage of the present method over the single-strip method 
(THS) [4] is two-fold. First, temperature data may be taken before switch- 
ing on heat, which means that a superimposed, slow temperature variation 
need not produce errors. Secondly, the heat dissipation in the sensor is 
small and constant, which means that a possible thermal resistance at the 
interface would be of no consequence. This is of special importance in view 
of the possibility of extending the method to electrically conducting materi- 
als by interposing an insulation layer of, say, Ta20 5 [16] between the strips 
and the specimen. 
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